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We propose a generalization of the well-known fluctuation-induced tunneling conduction mechanism based
on electron tunneling through finite segment�s� of nanoconstrictions whose transverse dimension is less than
half the Fermi wavelength. By considering the effects of thermally induced voltage fluctuations across the
nanoconstrictions, a temperature-dependent conductivity behavior is obtained which is in good agreement with
the experiments, with reasonable parameter values. In the limit of high applied voltage the present model
predicts interesting electronic Fabry-Perot behavior manifesting as peaks in differential conductance with
linear variation in their voltage separations.
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I. INTRODUCTION

In disordered materials characterized by large metallic re-
gions separated by small insulating gaps, it has been widely
observed that the conductance-temperature behavior follows
a typical variation that can be well described by the
fluctuation-induced tunneling conduction �FITC�
mechanism.1 In contrast to the usual expectation that tunnel-
ing conduction should exhibit small or no temperature varia-
tion, it was shown that, at finite temperatures, thermally in-
duced fluctuation voltages across the insulating gap �which
may be regarded as a small capacitor� can influence the tun-
neling probability and thereby impart a characteristic tem-
perature dependence to the conductivity. The FITC can suc-
cessfully explain the nonmetallic temperature dependence of
conductivity in diverse materials such as carbon-
polyvinylchloride films, tin-doped indium oxide �ITO� thin
films, carbon nanotube �CNT� bundles, and conducting
polymers.2–5 These materials share the common trait that,
other than the nonmetallic temperature variation in the con-
ductivity, other properties, e.g., optical characteristics, all ex-
hibit metallic behavior.

In spite of the success of the FITC, however, there are
some cases in which the parameters extracted by applying
the model are difficult to reconcile with known material
properties. For example, the barrier height can be unphysi-
cally small �several meV� and the barrier width unreasonably
large �50–100 nm�. This is in contrast to the usual barrier
height on the order of 1 eV and barrier width on the order of
1 nm. The existence of such cases imply that, in addition to
the conventional picture of insulating potential barrier for the
gap separating the metallic regions, there could be alternative
physical scenario�s� that display similar characteristics.

In this paper we propose a model in which the insulating
potential barrier is replaced by very narrow constriction�s�,
consisting of conducting elements �such as a chain of single
metallic atoms� whose transverse width is less than half the
electronic Fermi wavelength. As electrons behave like waves
in the nanoscale, the narrow constriction acts like a wave-
guide with the transverse dimension below the cutoff. As the
constriction is finite in length, tunneling transport can occur.

In what follows, we recapitulate the FITC mechanism in
Sec. II, followed by the presentation of the model in Sec. III.

Outline of the mesoscopic calculations is given in Sec. IV.
Results and discussion, together with comparisons to the ex-
periments, are given in Sec. V. Good agreement is shown
with the observed two-probe resistance measurements on
metallic RuO2 and IrO2 nanowires.6 We choose to compare
with these experimental results because in these particular
cases both four-probe and two-probe measurements were
carried out, with opposite temperature variations �two-probe
results showed nonmetallic behavior�. Hence it is clear that
the two-probe results are dominated by the contacts. More-
over, the parameters extracted by applying the FITC show
unphysically small potential barrier height and large barrier
width, exactly the deficiency we wish to correct with the
model in Sec. III. This is in contrast to the results observed
recently in CNT samples,5 where the agreement between the
two-probe and four-probe results indicates the measured
characteristics to be intrinsic to the bulk sample, i.e., arising
from CNT-CNT contacts. Details of some of the calculations
are given in Appendixes A and B.

II. FLUCTUATION-INDUCED TUNNELING CONDUCTION

In the model underlying the FITC, large metal grains are
separated by insulating barriers and the contact gap between
two metal grains can form a tunneling barrier with an effec-
tive capacitance as shown in Fig. 1�a�. Figure 1�b� shows the
potential profile of a junction barrier with an externally ap-
plied voltage VA �or electric field �A� together with a ther-
mally induced fluctuation voltage VT �or electric field �T�,
which can be either along the direction of VA or against it.
The junction can experience two values of total voltage VT
+VA or VT−VA. By assuming VA� �VT�, the resulting two
tunneling currents I+= 1

2 I�VT+VA� and I−= 1
2 I�VT−VA� �the

factor of 1
2 arises since each has equal probability of occur-

rence� are opposite in directions. From Fig. 1�b�, it is clear
that the net current is given by

�I =
1

2
�I�VT + VA� − I�VT − VA�� . �1�

In the limit of VA→0, the partial conductance with a fluc-
tuation voltage VT is defined as
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� �VT� = lim
VA→0

�I

VA
=

dI�VT�
dVT

. �2�

To obtain the temperature dependence, it is observed that,
since VT is thermally induced, it obeys the Boltzmann distri-
bution. This can be seen as follows.

The charging energy of the capacitor for the barrier junc-
tion is

EC =
1

2
CVT

2 , �3�

where C is the capacitance, given by

C = �0
S

H
, �4�

with �0 being the dielectric constant in vacuum, S as the area,
and H as the thickness of the capacitor �tunnel junction�.
According to the Boltzmann distribution, the distribution of
thermally activated EC for the capacitor is given by

P�EC� = N exp�−
EC

kBT
� , �5�

where N is the normalization constant. From Eqs. �3� and �5�
we obtain the average value of VT

2 as

	VT
2
 =

kBT

C
. �6�

This is the same result as obtained from the equipartition
theorem. Substitution of Eq. �3� into Eq. �5� leads to

P�VT� = � 2C

�kBT
�1/2

exp�−
C

2kBT
VT

2� , �7�

where the normalization constant has been explicitly evalu-
ated. At a finite temperature, the total conductance is an in-
tegral over all the partial conductances at potentially possible

fluctuation voltages obeying the Boltzmann distribution.
Hence

� = �
0

�

P�VT�
dI�VT�

dVT
dVT, �8�

with P�VT� given by Eq. �7�. Temperature dependence of the
FITC directly follows. In fitting the experimental data, we
shall treat the capacitance C to be slightly adjustable from its
value as given by Eq. �4� so as to account for the possible
deviations from the idealized geometry.

III. MODEL PRESENTATION

We present our model by using as example the two-probe
contacts with a metallic nanowire.6 However, the arguments
presented are applicable to other relevant scenarios as well.

Consider a non-Ohmic contact �the magnified figure in
Fig. 2�a��. There can be many possible contact microstruc-
tures. As there are no truly conducting contacts, the overall
contact resistance is dominated by those structures that have
the least resistance �as we assume the contact structures to be
in parallel�. The two conditions of being �1� nonconducting
and �2� least resistance means that we can narrow down the
possible structures to those constrictions of very small width
made of �single� metallic atoms, which do not allow any
conducting channel because the transverse dimension is be-
low the waveguide cutoff threshold.

The realistic geometry of a nanoconstriction is naturally a
three-dimensional �3D� structure connecting the two large
metallic regions. The constriction can be regarded as a cylin-
drical segment as shown in the top panel of Fig. 2�b�. If we
consider only the azimuthally symmetric wave mode �rea-
sonable for the lowest cutoff mode�, then the problem can be
simplified to two dimensions �2D�. If we further approximate
the cylindrical cross section by a square and require the
mode number along the two transverse directions to be the
same, then we reduce the geometry to that shown in the
bottom panel of Fig. 2�b�. For simplicity, we will treat the

FIG. 1. �Color online� �a� Schematic illustration for the insulat-
ing junction between two large metallic granules, which may be
regarded as a capacitor. �b� The tunneling potential barrier with the
external electric field �A and the fluctuation electric field �T that can
be along either the forward or the backward directions. I+ and I−

refer to the two tunneling currents, along opposite directions of
�T+�A and �T−�A. Here we assume ��T���A. The dashed lines
illustrate the effect of �T on the barrier.

FIG. 2. �Color online� �a� Schematic illustration of the nanocon-
strictions in the contact region between a nanowire and the metallic
electrical lead. In the enlarged section �bottom panel� the red circles
represent the metallic atoms. �b� The 3D �top� and 2D �bottom�
schematic illustrations for a nanoconstriction connecting the con-
ducting regions.
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problem in 2D and expect some differences with the 3D
model. One is that the density of states �the number of
modes� in the 2D case is less than that in the 3D case since
the azimuthal degree of freedom is omitted. Such details of
the 3D model will be pursued in the future. Also, for the 2D
model the area �S� of the capacitor �see Eq. �4�� will be set to
be 0.02, 0.04, and 0.10 nm2, on the scale of single atom
chain’s cross section. It is noted that the value of S does not
significantly affect the predictions of the model.

IV. CALCULATIONAL APPROACH

At the mesoscopic scale, a transport “channel” can be
viewed as an electronic waveguide mode. At zero tempera-
ture, the conductance of such a waveguide mode may be
expressed by the Landauer formula7

G =
2e2

h
t , �9�

where e is the electron charge, h the Plank constant, and t the
transmission coefficient for the electronic waveguide mode,
which can be expressed as

t = �
j=1

M

tj . �10�

Here tj is the partial transmission coefficient for the mode “j”
in the waveguide, M being the total number of guided
modes. The procedure for calculating tj is detailed in Appen-
dix A.

At nonzero temperatures, we must consider the smearing
of the Fermi surface. In a two-terminal system with the
chemical potential difference � between the two electrical
terminals, the net current may be written as7

I��� =
2e

h
� t�E,���f�E� − f�E + ���dE , �11�

where t�E ,�� is the transmission coefficient of an electron
wave with incident energy E under a chemical-potential dif-
ference � �or bias voltage V, �=eV�, and f�E� is the Fermi-
Dirac distribution

f�E� = �1 + exp��E − 	�/kBT�
−1. �12�

Given that the transmission coefficients can be evaluated, we
obtain the I-V relation from Eq. �11�, from which dI /dV may
be evaluated as a function of V. Then by using Eq. �8�, the
temperature dependence of conductance can be obtained
through integration with the Boltzmann distribution.

To calculate the transmission coefficient t, the mixed
boundary matching approach was used to solve the
Schrödinger equation �see Appendix A for details� in which
the wave functions in the electrical terminal regions are ex-
pressed as the superposition of �waveguide� eigenmodes, and
in the sample region by the discrete basis �defined at each
grid node�. The values at the grid nodes and the expansion
coefficients are the unknowns. The relevant equations are of
two types: one is from the discretized Schrödinger equations
for each grid node, and the other is from the boundary con-

ditions at the interfaces between the sample and the two ter-
minals. Figure 3�a� shows the geometry and the relevant co-
ordinate system for the two-terminal system.

Figure 3�b� shows a calculated example for electron wave
transport through a nanoconstriction. An incident eigenmode
from the right terminal area passes through the narrow con-
striction in the middle onto the left terminal area. The real
part of the electron wave function is drawn as contours. The
blue mesh in the sample region stands for the discrete grid
upon which the Schrödinger equation was solved numeri-
cally by the finite difference method. The empty region,
above the mesh in Fig. 3�a�, refers to the area with an infinite
potential barrier, in which electron wave is excluded. Here H
is the length of the narrow constriction. The width of the
terminal is taken to be a and the transverse dimension of the
narrow constriction is denoted as b. Their values are given in
the figure captions.

It should be noted that, in the case of tunneling transport,
very fine grid must be used in order to ensure convergence.
That fine grid necessarily increases the computational load.

FIG. 3. �Color online� �a� Geometry and the calculation coordi-
nate for the two-terminal system. The lower sample region is dis-
cretized by a Na by Nb mesh. For the upper infinite potential region,
the grid point number along the y direction is Nc �see Appendix A
for details�. �b� A calculated example of the wave-function contours
in a nanoconstriction. Here the terminal width is a=0.30 nm; width
of the nanoconstriction is b=0.19 nm and its length is H
=0.40 nm. Fermi wavelength is 0.421 nm. The transverse dimen-
sion of the constriction is noted to be slightly less than half the
Fermi wavelength.
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Some numerical technique, such as the sparse matrix ap-
proach, has been used to achieve efficiency.8

V. RESULTS

The approach described above has been used to calculate
the temperature variation in the fluctuation-induced tunnel-
ing conductance for the contact resistance to the metallic
RuO2 nanowire.6 The Fermi energy of RuO2 is �8.5 eV,
obtained from the density-functional calculations.9,10 The
corresponding Fermi wavelength 
F is 0.421 nm.

A. Temperature dependence of the conductance

The calculated transmission curves with different bias
voltage �V� and incident energies �Ei� are shown in Fig. 4�a�
�Vmax=10 �V��. Here nanoconstriction’s geometric param-
eters are a=0.30 nm, b=0.19 nm, and H=0.40 nm. The
cutoff wavelength is 0.38 nm �2b�, less than the Fermi wave-
length in the RuO2 nanowire.

From Eq. �11�, the integral should be done over the range
from EF−eVmax to EF �the Fermi distribution in Eq. �12� is
nearly a step function for up to T=500 K since the width of
f�E�’s sharp drop is kBT, much less than the maximum
chemical-potential difference �eVmax� �kBT�500 K�
=0.043 eV�eVmax�; thus the range �EF−eVmax,EF� in-
cludes almost all the relevant electron energies
. If the inci-
dent energy is lower than �EF−eVmax /2�, t�Ei ,�� is almost
zero. Hence we only need to calculate the incident energy
from EF to �EF−eVmax /2.5�.

By using Eq. �11� to integrate the current at different in-
cident energies, we obtain the bias voltage dependence of the
total current �solid curve in Fig. 4�b��. The differential con-
ductance �dashed curve in Fig. 4�b�� is obtained through nu-
merical differentiation.

Since the fluctuation voltage across the constriction is
thermally induced, the above conductance results �shown in
Fig. 4�b�� are integrated with the �thermal fluctuation� volt-
age distribution to obtain the temperature dependence of the
conductance �see Eq. �8��. The result is shown in Fig. 4�c�.
By inverting the conductance, the resistance-temperature
�R-T� relation is obtained, shown in Fig. 4�d�.

For a constriction with a length of 6.5 Å, the calculated
transmission is plotted as a function of bias voltage in Fig.
5�a�. Here each curve corresponds to one incident energy,
ranging from EF to EF−4.0 eV. With the same approach as
described above, we obtain the R-T relationship as shown in
Fig. 5�b�.

In the original FITC model,1,5,6 the resistance-temperature
relation has the following characteristic expression

R�T� = R0 exp� T1

T0 + T
� , �13�

where T1 can be regarded as a measure of the energy re-
quired for an electron to overcome the energy barrier and T0
the temperature below which elastic tunneling conduction
dominates. To compare our 2D tunneling model to the be-
havior given by Eq. �13�, we rewrite Eq. �13� as a linear
function of T:

1

ln�R/R0�
=

T

T1
+

T0

T1
, �14�

where R0, T0, and T1 are the fitting parameters. With reason-
able parameter values, we find our simulation results to have

FIG. 4. �Color online� Simulation results for a nanoconstriction
with a=0.30 nm, b=0.19 nm, H=0.40 nm, 
F=0.421 nm, and
C=4.43�10−22 F. �a� Transmission plotted as a function of bias
voltage. Each curve is for one incident energy, ranging from EF

�top� to �EF−4.0 eV� �bottom�. �b� I vs V �solid curve� and
G�dI /dV� vs V �dashed curve�. �c� Conductance plotted as a func-
tion of temperature. �d� Resistance plotted as a function of
temperature.

FIG. 5. �Color online� �a� Transmission plotted as a function of
bias voltage. Here a=0.30 nm, b=0.19 nm, H=0.65 nm, 
F

=0.421 nm, and C=5.45�10−22 F, and each curve is for one in-
cident energy, ranging from EF �top� to �EF−4.0 eV� �bottom�. It is
noted that the top curve exhibits a peak with a section to its right
that might be interpreted as negative differential conductance for
that energy. This behavior arises from quantum interference of the
electronic wave and is the harbinger of the electronic Fabry-Perot
effect to be detailed in Sec. V B. �b� Resistance dependence on
temperature, for the same nanoconstriction as in �a�. �c� 1 / ln�R /R0�
vs T relation from the calculated 2D model �blue curve� and from
the experimental data �colored open squares�. The fitted FITC pa-
rameter values for the theory curve are T1=1491 K, T0=190 K,
and R0=6.8· �h /2e2�.
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a near-linear behavior �solid curve in Fig. 5�c��. The theory is
noted to agree very well with the experimental data from Lin
et al. �from the H1 curve of Fig. 3 in Ref. 6�, shown as
colored squares in Fig. 5�c�. Here the FITC fitting parameter
values to our theoretical curve are T0=190 K, T1=1491 K,
and R0=6.8�h /2e2�. We also fit our simulation results to the
other data from Lin et al.6 �see Table I�, with good agree-
ments as well.

Table I lists all the size parameters, adjusted to fit the
experiment data displayed in Table II, and the fitted T0 and
T1 values for the theory curves in the three cases. Here �� is
the effective barrier height, evaluated from Eq. �15�. We
compare these parameters with the fitting parameters from
Lin et al.’s6 nanowire data using the original FITC model,
listed in Table II. It is easy to see that our constriction lengths
are much shorter and the barrier heights much larger, which
are more physical. Our model also shows that, for the nar-
rower tunneling constrictions, the effective barrier height can
be much larger than that for the wider constrictions �but still
below the cutoff�.

For a nanoconstriction that is much longer—1.1 nm in
length �0.21 nm in width�, the transmission curves for the
different incident energies and the corresponding I-V, G-V,
and R-T relations are shown in Fig. 6. The parameters are fit
to the data curve H6 in Ref. 6. Their values are shown in
third row of Table I.

For the temperature dependencies of resistance shown in
Figs. 4–6, we can see that, at very low temperatures �less
than 20K�, the resistance is almost independent of the tem-
perature, indicating elastic tunneling as the conduction
mechanism. At higher temperatures, the resistance begins to
decrease, owing to the thermal fluctuation mechanism.

Furthermore, comparison between the different R-T rela-
tions for the three nanoconstrictions shows that in the third

case the resistance tends to decrease very quickly when tem-
perature increases from zero, and at high temperatures the
resistance tends to a constant. This can be explained as fol-
lows. The third case �shown in Fig. 6� involves a constriction
which is wider �closer to the cutoff threshold� and hence
easier for the electron wave to tunnel than the other two
cases �see the transmission curves in Figs. 4�a�, 5�a�, and
6�a��. As a result, at low temperatures the third case has a
lower resistance �see Fig. 6�c��. Also, because the relevant
capacitance is smaller for the third case, the average fluctua-
tion voltage tends to be larger than the other two cases, and
the temperature-independent elastic tunneling process there-
fore tends to disappear more quickly �this is also evident
from the small fitting parameter T0�. This also explains the
fact that at higher temperatures the R-T curve tends to a
constant, owing to the thermal activation effect.

B. High voltage behavior

For a tunneling constriction that is relatively long �e.g.,
1.1 nm� and only slightly less than the cutoff width �e.g.,
0.21 nm, less than 
F /2=0.2105 nm�, there can be an inter-
esting prediction of the model at high applied voltage. Figure
6�a� shows the transmission curves as a function of the bias
voltage and incident energy. The incident energy ranges from
EF to EF−2.6 eV.

After integrating all the incident current for the different
incident energies, an I-V curve is obtained �at 0 K�. The
differential conductance �dI /dV or G� can be obtained from
the I-V curve through numerical differentiation, and both are
shown in Fig. 6�b�. Here we do not restrict ourselves to the
low-field �voltage� regime but the applied voltage is still
within a reasonable range, i.e., a few volts per nm. It is seen
that there exists steplike I-V behavior with corresponding
peak-and-valley oscillations in the G-V curve. This interest-
ing behavior comes from the fact that, since the electronic

TABLE I. The fitting parameters obtained from the 2D tunnel-
ing model. The effective barrier height �� is evaluated in accor-
dance with Eq. �15�. Here the FITC parameter values T0 and T1 are
obtained as the best fit of Eq. �14� to the theory curves.

Sample
H

�nm�
b

�nm�
T1

�K�
T0

�K�
��

�eV�

H3 0.40 0.19 317 75 1.93

H1 0.65 0.19 1491 190 1.93

H6 1.10 0.21 19.3 1.2 0.04

TABLE II. The fitting parameters from Lin et al.’s experimental
data �Ref. 6�, using the form of Eqs. �13� and �14�. The values of S
are those estimated in Ref. 6 for the actual electrode contact areas.
They can be significantly different from the values in the estimation
of C �Eq. �4�� for the fluctuation voltages.

Sample
H

�nm�
S

�nm2�
T1

�K�
T0

�K�
�

�meV�

H3 6.4 60�370 363 104 4.6

H1 15.7 400�650 1396 173 4.1

H6 8.7 70�400 20 8.6 1.1

FIG. 6. �Color online� Simulation results for a nanoconstriction
with a=0.30 nm, b=0.21 nm, H=1.1 nm, 
F=0.421 nm, and C
=8.05�10−22 F. �a� Transmission dependence plotted as a function
of bias voltage. The curves from top to bottom are for different
incident energies, ranging from EF to �EF−2.6 eV�, respectively.
�b� I-V �solid curve� and G-V curves �dashed curve� at T=0 K. �c�
Resistance plotted as a function of temperature.
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energy is only slightly less than the cutoff threshold, once the
electron gains energy from the applied electric field so that
the cutoff threshold is exceeded, it can become a propagating
mode, leading to interference effect owing to the finite length
of the constriction. This phenomenon can serve as a predic-
tive validation for our model, in conjunction with the tem-
perature dependence of the resistance.

The I-V curves at finite temperatures were also calculated
�by including the influence of the voltage fluctuations as well
as the smearing of the Fermi levels�; the results are shown in
Fig. 7. It is seen that, when the temperature increases, the
fluctuation voltage becomes larger and hence the steplike
behavior in the I-V curve is less pronounced.

As mentioned before, the peaks and valleys in Figs. 6�a�
and 6�b� come from interference of the electronic waves.
Such interference is in exact analogy to the Fabry-Perot in-
terference of light as it passes through a thin film. However,
in contrast to the classical Fabry-Perot effect where the peaks
are equally spaced as a function of frequency, here the posi-
tions of the peaks in the dI /dV vs V curve follow a quadratic
variation. This is due to the different dispersion relations
between the quantum Schrödinger wave �in which the energy
is a quadratic function of wave vector� and the electromag-
netic wave �in which the energy is a linear function of wave
vector�, shown in the following section.

It should also be noted that, under a high electric field, the
electronic density might be altered, and the problem would
have to be treated in a self-consistent manner. In our treat-
ment it is assumed that the electronic density change is not
so large as to cause significant distortion in our results.

C. Equivalent one-dimensional tunneling

In this section we show that, even though the transport
calculations are 2D, some relevant parameter �such as the
effective potential barrier height ��� and the steps in the I-V
behavior can be obtained from one-dimensional �1D� model
considerations.

For the effective barrier height, it is simple to deduce it
from the kinetic energy of the electron along the tunneling
direction. That is, since the kinetic energy is given by
�2�k�

2+k�
2 � /2m, where k���� is the transverse �longitudinal�

wave vector, the cutoff energy is given by k�=0 and k�

=2� /
cut, where 
cut=2b denotes the transverse dimension
of the constriction. Hence �cutoff= ��2 /2m��2� /
cut�2. The ef-
fective barrier height is defined as ��=�cutoff−EF, or

�* =
�2

2m
�� 2�


cut
�2

− �2�


F
�2� , �15�

where 
F is the Fermi wavelength. Numerical values of ��

are listed in the last column in Table I for several 2D tunnel-
ing constrictions. For the first two cases, �� is of the order of
1.0 eV, which differs significantly from the unphysically
small barrier height �several meV� obtained from the previ-
ous fits to the traditional FITC model �Table II�.

To understand the quadratic separation of the peaks in the
G-V relation, consider a 1D tunneling model as shown in
Fig. 8. On the left side the potential barrier is higher than the
Fermi level by ��, and on the right side the Fermi level is
lowered by a bias voltage V0. A triangular tunneling barrier
results. The range �0,x1� is the tunneling range. In the other
range ��x1 ,L�� the electron has higher energy than the poten-
tial and the wave function is complex �and hence propagates
like a wave� �see Eq. �16��. This illustrates the fact that, once
the electron gains energy from the electric field so as to
exceed the cutoff threshold, it can convert itself from an
exponentially decaying wave function to a wavelike propa-
gating wave function.

For this 1D model, we use the WKB approximation11 to
write the wave function in the range �x1−L� as


�x� =
C1ei��x� + C2e−i��x�

�4 2m

�2 �E − V�x��
, �16�

where ��x�=�x1

x �2m
�2 �E−V�x���dx�, and V�x� is the potential

in the 1D case, depending on the bias voltage V0 and the
potential barrier ��.

FIG. 7. I-V curves of a nanoconstriction at different tempera-
tures. Here a=0.30 nm, b=0.21 nm, H=1.1 nm, 
F=0.421 nm,
and C=8.05�10−22 F. With increasing temperature, the steplike
behavior is smeared.

FIG. 8. A simplified 1D tunneling model to explain the �� evalu-
ation and the appearance of peaks in the differential conductance vs
applied voltage.
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For the simulation case under consideration, the cutoff
wavelength �0.21�2=0.42 nm� is just a bit smaller than the
Fermi wavelength �0.421 nm� so ���V0 �see Table I�. We
can omit the tunneling part �in Fig. 8, x1�0� and carry out
the phase integration to obtain

��L� = �
0

L�2m

�2 �E − V�x��dx

= �
0

L�2m

�2

V0

L
xdx

=
2

3
�2m

�2 V0L , �17�

where L is the constriction length and V0 is the bias voltage
at x=L.

A simple derivation from Eq. �16� shows that the peak
positions in �
�L ,V0��2 �also for transmission-V curve� obeys
the condition

2��V0� + � = 2�n , �18�

where � is a constant phase factor and n is an integer. If we
denote Vn as the peak values in the transmission vs bias
voltage curve, we have

2�n + � =
4

3
�2m

�2 VnL + � = 2�n , �19�

and it is easy to deduce from Eq. �19� that

Vn = K1n2 + K2n + K3, �20�

where K1, K2, and K3 are constants depending on L. As the
separation between the peaks increases linearly, it follows
that the peak positions in transmission-bias �t-V� curve fol-
low a quadratic variation.

Since the conductance G�V� is the differential of I, i.e.,
dI�V� /dV, and from Eq. �11� I�V� is the integral of t�E ,V�
over all energies, G-V curve has a very similar shape with
the t�EF ,V�-V curve �Appendix B gives a detailed derivation
to prove this point�. Hence the peak position in G-V curve
must obey a quadratic variation.

VI. CONCLUDING REMARKS

We present a model of FITC involving electron tunneling
through nanoconstrictions. Landauer formula is used to cal-
culate mesoscopic tunneling in finite-length nanoconstric-
tions with transverse dimensions less than half the Fermi
wavelength. Through the consideration of thermally induced
fluctuation voltages, we obtained a temperature dependence
of conductivity very similar to the original FITC model but
with more realistic parameter values. At finite voltages, step-
like I-V behavior is predicted which is a manifestation of
electronic Fabry-Perot interference effect.
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APPENDIX A: TRANSMISSION CALCULATION
IN A TWO-TERMINAL SYSTEM

Our model is based on the 2D geometry in which a
sample is connected with two semi-infinite electrical termi-
nals on the two sides. At the mesoscopic scale, the electrical
terminals may be viewed as electronic waveguides and the
sample may be viewed as the wave scattering area. In the
tunneling problem, the terminals are wider than the nanocon-
striction, which is our sample area. We set an infinite high
potential wall on one side of the sample to narrow down the
nanoconstriction, shown in Fig. 3�a�. Since the electron wave
function is excluded from the infinite potential area, we only
discretize the remaining sample area.

With the coordinate system shown in Fig. 3�a�, we can see
that the electrical terminals are defined in the areas of x�0,
x�−H, and 0�y�a. Assuming the potential in the terminal
areas to be uniform along the x direction and substituting the
basic waveguide solution 
=eik·x��y� into the Schrödinger
equation

−
�2

2m
�� 2
 + V�r��
 = E
 , �A1�

we obtain the differential equation for �n�y�,

d2��y�
dy2 + �2m

�2 �E − V�r�� − k2���y� = 0, �A2�

through separation of variables. For simplicity, we define the
upper and lower boundaries of the terminals by a hard wall
potential: V�y�=0 �0�y�a� and V�y�=� �y=0 or a�. With
the boundary conditions �n�0�=�n�a�=0 the eigenfunctions
can be simply expressed as

�n�y� = sin�n�

a
y� , �A3�

together with the eigenvalue k�n�=�2m
�2 E− � n�

a �2. Since the
potential may be different on two sides of sample �E1 for
terminal 1, x�0 and E2 for terminal 2, x�−H�, we define

kr�n� =�2m

�2 E1 − �n�

a
�2

, �A4a�

kf�n� =�2m

�2 E2 − �n�

a
�2

. �A4b�

The wave functions in the two electrical terminals may be
expressed as


�1� = 
0 + 
A = e−ikr�n0�x�n0
�y� + �

n=1

N1

Aneikr�n�x�n�y� ,

�A5�
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�2� = 
B = �
n=1

N1

Bne−ikf�n��x+H��n�y� , �A6�

where 
0 and 
A are the incident and reflected wave func-
tions in terminal 1, respectively. 
0 consists only one mode
with index n0. 
B is the transmitted wave function in termi-
nal 2. All modes including evanescent waves are considered
for accurate results. From the discrete sine transformation,
we set N1=Nm−2 �Nm=Nb+Nc� in Eqs. �A5� and �A6�,
where N1 is the number of free grid points at the sample/
terminal interface.

The sample area �−H�x�0� consists of a low potential
area �0�y�b� and a high potential �infinite� area �b�y
�a�. The Schrödinger equation �Eq. �A1�� can be written as

�� 2
S + k0
2��r��
S = 0, �A7�

where ��r��=1−V�r�� /E and k0
2= 2mE

�2 .
We use center difference discretization to write

�2
i,j
S � �
i+1,j

S + 
i−1,j
S + 
i,j+1

S + 
i,j−1
S − 4
i,j

S �/d2,

where 
i,j
S is the discrete wave function at the grid node with

coordinate �i , j�. Each unit cell is a square with size �x=�y

=d, and d= H
Na−1 = a

Nm−1 , where a=b+c, Nm=Nb+Nc. The dis-
cretized Schrödinger equation is �we use Pij to stand for 
i,j

S �
given by

�Pi+1,j + Pi−1,j + Pi,j+1 + Pi,j−1 − 4Pi,j� + �k0d�2��i, j�Pi,j = 0.

�A8�

For the computational grid, there are Na�Nb nodes as shown
in Fig. 3�a�. Along the x direction the node index ranges
from one to Na, corresponding to the points from �0,0� to
�−H ,0�; along the y direction the node index ranges from
one to Nb, corresponding to the points from �0,0� to �0,b�.
There are a total of �Na−2��Nb−2� independent equations
�Eq. �A8�� in the grid area.

On the sample-electrical terminal boundaries, we set up
equations from the boundary conditions, which state that the
wave function and its derivative should be continuous at the
interfaces. At x=0, we have


�1��x=0 = 
1,j
S , �A9a�

�d
�1�/dx��x=0 = �
1,j
S − 
2,j

S �/d . �A9b�

By substituting Eq. �A5� into Eq. �A9�, we get

1.0 sin�n0�

a
yj� + �

n=1

N1

An1 sin�n�

a
yj� = P1,j , �A10a�

− ikr�n0�1.0 sin�n0�

a
yj� + �

n=1

N1

An�ikr�n��sin�n�

a
yj�

=
P1,j − P2,j

d
. �A10b�

These equations are used at every node at the x=0 boundary,
�1,yj�, where j ranges from 2 to Nb−1.

For a more precise calculation, we find that �P2,j
− P1,j� /d is the approximation of d
 /dx at x=0 with first-
order accuracy but it is also the approximation of d
 /dx at
x=−d /2 with second-order accuracy. So when the boundary
is chosen at x=−d /2, it would lead to better precision. Thus
Eq. �A10b� can be modified as

− ikr�n0�eikr�n0�d/2sin�n0�

a
yj�

+ �
n=1

N1

An�ikr�n��e−ikr�n�d/2 sin�n�

a
yj�

=
P1,j − P2,j

d
. �A10c�

Similarly, we have the boundary-condition equations at the
boundary x=−H

�
n=1

N1

Bn 1 sin�n�

a
yj� = PNa,j , �A11a�

�
n=1

N1

Bn�− ikf�n��sin�n�

a
yj� = �PNa−1,j − PNa,j�/d .

�A11b�

The modified boundary-condition equation of Eq. �A11b� is
�at x=−H+d /2� given by

�
n=1

N1

Bn�− ikf�n��e−ikf�n�d/2sin�n�

a
yj� = �PNa−1,j − PNa,j�/d .

�A11c�

In Eq. �A11�, it should be noted that 2� j�Nb−1.
It should be noted that, in “Nc range” �the infinite poten-

tial part, b�y�a�, only the wave-function continuity condi-
tion applies:

1.0 sin�n0�

a
yj� + �

n=1

N1

An1 sin�n�

a
yj� = 0, �A12�

�
n=1

N1

Bn1 sin�n�

a
yj� = 0. �A13�

In Eqs. �A12� and �A13�, Nb� j�Nm−1. The total number
of unknowns is noted to be Nx=2N1+Na�Nb−2�=2�Nb−2�
+2Nc+Na�Nb−2�, which equals the total number of equa-
tions Nf =4�Nb−2�+2Nc+ �Na−2��Nb−2�. We assemble all
these equations into a large matrix equation. Since there are
many zero elements in the matrix, the sparse matrix tech-
nique can be used.8

After solving the equations, the transmission coefficient
of the system can be evaluated. It starts from the flux expres-
sion
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j� =
�

m
Im�
*�� 
� . �A14�

By substituting the forms of the wave functions given above
and integrating along the y direction �and taking into account
the orthogonality of the eigenfunctions ��n�y�
�, total current
Ix in electrical terminal 2 may be written as

Ix
�2� =

�

m

a

2�
n=1

M

�Bn�2kf�n� . �A15�

Here M is the number of guided modes in the terminal �eva-
nescent modes have no contribution to the flux�. The incident
current in terminal 1 can also be obtained as

Ix
�1� =

�

m

a

2
kr�n0� . �A16�

It follows that the transmission coefficient �Ix
�2� / Ix

�1�� for the
n0th incident mode is given by

t�n0� = �
n=1

M

�Bn�2kf�n�/kr�n0� . �A17�

Under the incoherent assumption in mesoscopic physics,
which states that in electrical terminals all the guided modes
should be considered as incoherent with respect to each
other,7 the total transmission coefficient is the summation of
those for all the allowed guided modes

t = �
m=1

M

tm = �
m=1

M

�
n=1

M

�Bn
m�2kf�n�/kr�m� . �A18�

Here the expansion coefficients �Bn
m� correspond to the trans-

mission coefficient for the incident mth mode scattered into
the outgoing nth mode.

APPENDIX B: RELATION BETWEEN t-V AND G-V
CURVES IN A TUNNELING CHANNEL

In this appendix we show that the transmission curve in
Fig. 6�a� should follow the behavior of the dI /dV−V �G-V�
curve in Fig. 6�b�. In other words, the similarity is not an
accident.

We recall that the conductance G�V� is the differential of
I�V�, and from Eq. �11�, I�V� is the integral of transmission
spectrum t�E ,V� over all energy E �here we use t�E ,V� in-
stead of t�E ,��, with V=� /e�. It may seem that, since the
differentiation and integration are two inverse operations,
G�V� should be the same as t�E ,V�. But the variables in the
differentiation �by V� and in the integration �by E� are not the
same. Hence this equivalence cannot be directly deduced.
However, it can be shown below that indeed G�V�
�Ct�EF ,V�. The key is to use the approximation of Eq. �B2�

to combine the two variables �E ,V� into one function K�x�,
then the differential and integral operations indeed cancel,
leading to the desired result.

In low temperatures, Eq. �11� can be rewritten as

I�V� =
2e

h
�

EF−Ve

EF

t�E,V�dE , �B1�

where E is the incident energy and V the bias voltage.
In Fig. 6�a�, from the transmission curves’ dependencies

on E and V0, we can construct an expression for t�E ,V� as

t�E,V� = K�Ve − �EF − E���A��EF − E��� , �B2�

where K�Ve�= t�EF ,V�, which is the first transmission curve
at the top of Fig. 6�a� �E=EF�, and here � is a proportionality
constant.

Equation �B2� means that all the transmission curves with
different incident energy E is just like the first curve t�EF ,V�,
except for some displacement ��EF−E��� along the x axis,
with some amplitude modulation factor A�x� that has a
smooth variation with E.

From the integral of Eq. �B2�, the differential conductance
may be written as

G�V� =
dI�V�

dV

=
2e

h
�

EF−Ve

EF dK�Ve − �EF − E���
dV

A��EF − E���dE

=
2e

h
�

−�Ve

0 dK�Ve + y�
dV

A�− y�
dy

�
,

where y=−�EF−E��. With partial integration, we obtain

G�V� =
2e2

h

1

�
K�Ve + y�A�− y��−�Ve

0

−
2e

h

1

�
�

−�Ve

0 dA�− y�
dy

K�Ve + y�dy .

Since A�x� is a smooth function of x, we drop the second
term above, then

G�V� �
2e2

h

1

�
�K�Ve�A�0� − K�Ve − �Ve�A��Ve�� .

�B3�

As the transmission evaluated from K�Ve−�Ve�A�−�Ve�
= t�EF−Ve ,V� �E=EF−Ve� is small �see Fig. 6�a��, the sec-
ond term of Eq. �B3� can be omitted. As a result we have

G�V� �
2e2

h

1

�
K�Ve�A�0� =

2e2

h

1

�
t�EF,V� . �B4�

The similarity between G�V� and t�EF ,V� is thus established.
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